Lifetime benefits of musical training
نویسندگان
چکیده
As we get older, both our bodies and brains find themselves in a constant state of change. While some of these changes are governed by normal developmental and maturational processes, others are experience-dependant and occur as a result of our day-to-day activities. Musical training is one of those activities that children tend to undertake and sometimes give up later in life. Even if of a short duration, research shows that such training may improve cognitive functioning. Music production is a highly complex task that requires the human brain to strongly link perception and action. Indeed, when someone learns how to play a musical instrument, he/she has to develop the precise fine motor skills needed to produce the correct sounds, therefore creating a strong linkage between sensory and motor mechanisms in the brain (Zatorre et al., 2007). But little is known as to whether there are any long term benefits to such training in cases where it is discontinued early in life. Interestingly, White-Schwoch et al. (2013), attempted to address this question via an experiment designed to determine if musical training early in life, even if for only a short period, can have long-term effects and offset the normally occurring age related decline of auditory neural function; when compared to normal hearing youg adults, older adults have a loss of temporal precision in the subcortical encoding of sound (Anderson et al., 2012). Based on the premise that adults with lifelong musical training (Parbery-Clark et al., 2012) do not exhibit age-related subcortical neural timing delays in response to fast-changing sounds (i.e., consonant– vowel (CV) transitions) important for language-based abilities, they sought to explore if limited early musical training could offset these age related timing delays. They first divided their participants (ages 55–76) into three groups based on the level of formal music training received: none, little (1–3 years; school courses), and moderate (4–14 years), all of which occurred before the age of 25. The task required that participants listen to presentations of the synthesized speech syllable [da], while their Auditory Brainstem Responses to complex sounds (cABRs; Skoe and Kraus, 2010) were recorded. The syllable was presented in two conditions, a quiet condition (presented alone) and a masked condition (presented with a babble track). Results show that older adults with moderate training had the fastest neural timing in response to the [da] stimuli followed by the little and none groups, in both conditions (quiet and masked). The moderate group was also the most resistant to latency delays due to noise (masked condition). Group differences were only seen in the region (time frame) of the response corresponding to the Consonant-Vowel transition (between the stop burst /d/ and the vowel /a/; the fast-changing dynamic speech elements in a syllable); during the stabilized vowel portion of the response, the groups were equivalent. The take home message here is that musical training can, to some extent, counteract age-related auditory declines even when it has been discontinued for several decades. One cannot entirely exclude the possibility that the above-highlighted differences reflect pre-existing differences in the brain of the people that chose to study music. However, Schlaug et al. (2005) conducted a study designed to address this specific question. They compared children who were just beginning music lessons with children who did not take part in such training. After only 14 months of lessons, functional changes were observed in the temporal lobe and temporal-parietal junction. None of these differences were present between the two groups prior to the music lessons. Furthermore, Hyde et al. (2009), demonstrated structural brain changes in motor and auditory areas after only 15 months of musical training in early childhood. This is particularly interesting in the context of White-Schwoch et al. (2013)’s findings that early training, even if limited, is associated with a more efficient auditory function later in life. In Hyde et al. (2009)’s study, the structural changes were correlated with behavioral improvements in musically relevant motor and auditory skills (motor sequencing, melodic and rhythmic tests), which demonstrates the strong impact musical training can have in early childhood. Moreover, musical training in children has been shown to facilitate pitch processing not only in a musical context, but also in
منابع مشابه
Why would Musical Training Benefit the Neural Encoding of Speech? The OPERA Hypothesis
Mounting evidence suggests that musical training benefits the neural encoding of speech. This paper offers a hypothesis specifying why such benefits occur. The "OPERA" hypothesis proposes that such benefits are driven by adaptive plasticity in speech-processing networks, and that this plasticity occurs when five conditions are met. These are: (1) Overlap: there is anatomical overlap in the brai...
متن کاملHow musical training affects cognitive development: rhythm, reward and other modulating variables
Musical training has recently gained additional interest in education as increasing neuroscientific research demonstrates its positive effects on brain development. Neuroimaging revealed plastic changes in the brains of adult musicians but it is still unclear to what extent they are the product of intensive music training rather than of other factors, such as preexisting biological markers of m...
متن کاملMusic Makes the World Go Round: The Impact of Musical Training on Non-musical Cognitive Functions—A Review
Musical training is becoming increasingly popular as a topic for scientific research. Here we review the available studies investigating whether and to which degree musical experience generalizes to cognitive functions unrelated to music abilities in healthy humans. In general, it seems that musical training is associated with enhancing effects, even if sometimes only restricted to the auditory...
متن کاملUnderstanding the benefits of musical training: effects on oscillatory brain activity.
A number of studies suggest that musical training has benefits for other cognitive domains, such as language and mathematics, and studies of children and adults indicate structural as well as functional differences between the brains of musicians and nonmusicians. The induced gamma-band response has been associated with attentional, expectation, memory retrieval, and integration of top-down, bo...
متن کاملTurning down the noise: the benefit of musical training on the aging auditory brain.
Age-related decline in hearing abilities is a ubiquitous part of aging, and commonly impacts speech understanding, especially when there are competing sound sources. While such age effects are partially due to changes within the cochlea, difficulties typically exist beyond measurable hearing loss, suggesting that central brain processes, as opposed to simple peripheral mechanisms (e.g., hearing...
متن کاملThe linguistic benefits of musical abilities.
Growing evidence points to a link between musical abilities and certain phonetic and prosodic skills in language. However, the mechanisms that underlie these relations are not well understood. A recent study by Wong et al. suggests that musical training sharpens the subcortical encoding of linguistic pitch patterns. We consider the implications of their methods and findings for establishing a l...
متن کامل